Dual fuel engines operate with diesel-like performance

Historically, one key reason diesel engines have been the top choice among oil and gas applications has been their solid performance. Diesel engines are known for their longevity and diesel fuel offers very high power density. These are still very much accurate. Meanwhile, natural gas engines have changed over the years too. Let’s look at engine performance from three aspects: 

  • Power density: Power density is an engine’s power output per unit of engine volume. For example, for large displacement engines, you would often see larger natural gas engines deliver power output comparable to smaller diesel engines. In other words, diesel engines have higher power density than natural-gas only engines. Meanwhile, there are also diesel engines upfitted for dual fuel applications. This combined with the electronic controls within the engine allows a dual fuel engine to feature diesel-like power density while operating in dual fuel model.
  • Transient response: Transient response performance is an engine’s ability to respond to varying power demands of the operation. Many oil and gas applications require transient response capabilities that 100% natural gas engines often have trouble accommodating. Meanwhile, selected dual fuel engines can offer comparable transient performance with their diesel-only alternatives.
  • Optimized operating range: Engines often run at a standard duty cycle per the application they are used in. Applying a new technology, like dual fuel, can sometimes require changes to that operating pattern to achieve the maximum fuel savings. This issue gets resolved when the dual fuel engine is optimized to ensure the maximum substitution rate (the portion of fuel energy provided by natural gas) is achieved in the ideal operating range required by oil and gas applications.